MINISTÉRIO DA EDUCAÇÃO
SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA
INSTITUTO FEDERAL DE EDUCAÇÃO CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO SUL – CAMPUS CAXIAS DO SUL

PROJETO PEDAGÓGICO
CURSO SUPERIOR DE TECNOLOGIA EM PROCESSOS METALÚRGICOS

IFRS- RS – CAMPUS CAXIAS DO SUL
2010
DADOS DE IDENTIFICAÇÃO INSTITUCIONAL

Presidente da República
Luiz Inácio Lula da Silva

Ministro da Educação
Fernando Haddad

Secretário da SETEC
Eliezer Pacheco

Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul – Campus Caxias do Sul

Reitora ‘Pro Tempore’ do IFRS
Cláudia Schiedeck. Soares de Souza

Diretor Geral - Campus Caxias
Giselle Ribeiro de Souza

Diretora de Ensino
Maria Terezinha Kaefer

Página Internet
www.caxias.ifrs.edu.br

Data: Junho de 2010.
1. DADOS DE IDENTIFICAÇÃO DO CURSO SUPERIOR DE TECNOLOGIA EM PROCESSOS METALÚRGICOS

TIPO: Curso Superior de Tecnologia em Processos Metalúrgicos

MODALIDADE: Presencial

DENOMINAÇÃO

HABILITAÇÃO: Tecnólogo

LOCAL DE OFERTA: IFRS - Campus Caxias do Sul.

TURNO DE FUNCIONAMENTO: Noturno e Vespertino.

NÚMERO DE VAGAS ANUAL: 70 vagas.

PERIDIOCIDADE DE OFERTA: Semestral.

CARGA HORÁRIA TORAL: 2.890 horas

MANTIDA: IFRS – Campus de Caxias do Sul

CORPO DIRIGENTE: Giselle Ribeiro de Souza, Maria Teresinha Kaefer, Tânia Salete Bianchi Carvalho

TEMPO DE INTEGRALIZAÇÃO:
Minimo: 8 semestres
Máximo: 8 anos.

ENDERECO: Rua Mario de Boni, 2250 - Bairro Floresta – Caxias do Sul/RS

DATA: Junho de 2010
2. SUMÁRIO
3. APRESENTAÇÃO:

Situado na Serra Gaúcha, uma das regiões mais industrializadas do Rio Grande do Sul, o Instituto Federal de Educação, Ciência e Tecnologia campus Caxias do Sul vem apresentar o CURSO SUPERIOR DE TECNOLOGIA EM PROCESSOS METALÚRGICOS.

4. CARACTERIZAÇÃO DO CAMPUS

O Campus Caxias do Sul é parte do bloco de expansão da Rede Federal de Educação Profissional, possuindo características próprias de um Campus situado num pólo industrial de Metal-Mecânica, atendendo a demanda do mundo do trabalho em questão. Esta Instituição de Ensino, também, pontua cursos de Licenciaturas e Formação de Docentes por acreditar que é necessário a qualificação profissional nas diferentes áreas do conhecimento.

O setor industrial responde por 50% da economia do Município, principalmente nos segmentos Metal Mecânico, Material de Transporte, Mobiliário, Produtos Alimentícios e Bebidas. O setor de Comércio e Serviços é responsável por 38% da economia e, a agropecuária, responde por 4% da economia ativa.

A região da Serra tem como base de sua indústria os Setores de Mecânica-Metalurgia (pólo Caxias do Sul), considerado o segundo pólo metal-mecânico do Brasil e Mobiliário-Madereira (pólo Bento Gonçalves). Somente na parte de Metal-Mecânica/Elétrica a região conta com aproximadamente 2.400 empresas.

No setor de transformação do plástico e de produtos químicos, embora a maior concentração esteja localizada em torno do Pólo Petroquímico de Triunfo, o município de Caxias do Sul se destaca com 569 estabelecimentos e 8.300 empregos, exercendo um papel de extrema relevância nesses setores.
No setor de serviços, como Alojamento, Alimentação, Reparação, Manutenção, Redação são responsáveis por cerca de 9.500 empregos em 3400 estabelecimentos. Diante deste cenário, o Campus de Caxias do Sul do Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul irá oferecer os Cursos Técnicos Integrados em Plásticos, Química, Mecânica e Administração (PROEJA), Cursos Técnicos Subseqüentes em Plásticos, Química e Cozinha, Cursos de Tecnologia em Processos Metalúrgicos e em Logística e Licenciatura em Matemática e Licenciatura em Formação de Professores.

Para tanto, o projeto arquitetônico prevê uma infraestrutura de 21 salas de aula de 54m² cada, Laboratório de Biologia, Laboratório de Física, Laboratório de Química Geral, Laboratório de Físico-Química, Laboratório de Química Analítica, Laboratório de Cozinha, Laboratório de Microbiologia, Laboratório de Intemperismo, Sala de Desenho, Laboratórios de Informática, Laboratório de Ensaios Mecânicos, Laboratório de Metrologia, Laboratório de Instrumentação, Laboratório de Tratamentos Térmicos, Laboratório de Metalurgia, Laboratório de Preparação Mecânica, Laboratório de Fundição, Laboratório de Conformação, Laboratório de Corte, Laboratório de Soldas, Laboratório de Usinagem, Laboratório de Caracterização Plásticos, Laboratório de Processos de Transformação de plásticos, Laboratório de hidráulica e pneumática, Laboratório de Processos de fabricação mecânica, Laboratório de Máquinas térmicas e motores. Além destes, é previsto uma biblioteca de 185m², em um primeiro momento, mas com projeto de um novo prédio para abrigar uma biblioteca de 270m² para acervo e mais 315 m² para salas de estudo individuais e em grupos. A obra do Campus iniciou no final de janeiro de 2010 com previsão de conclusão em novembro do mesmo ano.

A partir do segundo semestre de 2010, a Instituição iniciará suas atividades letivas em um prédio provisório com 4 salas de aula, laboratório de informática, biblioteca, área de convivência, mini-auditório, sala de professores e área administrativa. Os cursos oferecidos neste semestre serão os Cursos Técnico Subseqüente em Plásticos e Técnico Integrado em Administração (PROEJA), Curso Superior de Tecnologia em Processos Metalúrgicos, Curso de Licenciatura em Matemática e Curso de licenciatura em Formação de Professores.

5. **JUSTIFICATIVA:**
De acordo com a regulamentação os Institutos Federais adquirem um papel privilegiado para atuar na área da tecnologia, por estar ligada diretamente ao ensino profissional. Mais do que um direito, é um dever de nossa Instituição oferecer Cursos de Tecnologia, neste caso em especial, ofertar o Curso Superior de Tecnologia em Processos Metalúrgicos.

Utilizando-se como base a Lei 11.892, de 29 de dezembro de 2008, que institui a Rede Federal de Educação Profissional Científica e Tecnológica, e que cria os Institutos Federais de Educação, Ciência e Tecnologia, no qual destaca-se um dos objetivos “VI- Ministrar em nível de Educação Superior: a) Cursos superiores de Tecnologia visando à formação dos profissionais para os diferentes setores da economia”, o Campus Caxias do Sul coloca-se à disposição para suprir essa necessidade de profissionalização na área de metalurgia. Essa carência na área é reforçada pelo fato de que a taxa de urbanização do município de Caxias do Sul é de 92,5%, onde há um déficit de profissionais com a formação específica para atuar na Indústria Metalúrgica.

Existe um verdadeiro vácuo no mercado profissional no que tange a Tecnólogos e Engenheiros na Indústria Metalúrgica, um dos subsetores da Indústria de Caxias do Sul que mais emprega (12.764 empregos em 1.264 estabelecimentos), pois a oferta de cursos profissionalizantes na área industrial tem sido muito menor do que a necessidade dos setores.

No que tange a participação regional no setor industrial, percebe-se uma concentração localizada em torno do eixo Porto Alegre - Caxias do Sul, a qual é pólo de praticamente todos os setores industriais relevantes, conforme a figura 1. Temos em quase todo o Estado a indústria de transformação como responsável por estes dados.

Através da Tabela 1 podemos notar que o setor de Mecânica-Metalurgia corresponde a quase 30% do total da indústria, seguido pelos produtos alimentares-bebidas (27,76%), química (10,82%) e mobiliário-madeireira (8,42%), de forma que estes quatro setores podem ser entendidos como os prioritários em nossa economia, pois respondem por quase 87% do total da Indústria e por quase 40% da economia total do Rio Grande do Sul.
<table>
<thead>
<tr>
<th>Material</th>
<th>Percentual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minerais não-metálicos</td>
<td>3,02</td>
</tr>
<tr>
<td>Metalúrgica</td>
<td>4,05</td>
</tr>
<tr>
<td>Mecânica</td>
<td>25,11</td>
</tr>
<tr>
<td>Material elétrico e de comunicações</td>
<td>0,31</td>
</tr>
<tr>
<td>Material de transporte</td>
<td>3,11</td>
</tr>
<tr>
<td>Madeira</td>
<td>1,95</td>
</tr>
<tr>
<td>Mobiliário</td>
<td>6,47</td>
</tr>
<tr>
<td>Papel e papelão</td>
<td>1,46</td>
</tr>
<tr>
<td>Borracha</td>
<td>1,48</td>
</tr>
<tr>
<td>Couros e peles</td>
<td>1,55</td>
</tr>
<tr>
<td>Química</td>
<td>10,82</td>
</tr>
<tr>
<td>Perfumaria, sabões e velas</td>
<td>0,82</td>
</tr>
<tr>
<td>Produtos de matérias plásticas</td>
<td>0,37</td>
</tr>
<tr>
<td>Têxtil</td>
<td>0,26</td>
</tr>
<tr>
<td>Vestuário, calçados e artefatos de tecido</td>
<td>3,04</td>
</tr>
<tr>
<td>Produtos Alimentares</td>
<td>20,06</td>
</tr>
<tr>
<td>Bebidas</td>
<td>7,70</td>
</tr>
<tr>
<td>Fumo</td>
<td>5,60</td>
</tr>
<tr>
<td>Demais</td>
<td>2,83</td>
</tr>
</tbody>
</table>

Fonte: FEE/Núcleo de Contabilidade Social - Dados preliminares

Apesar da área da indústria ser um dos expoentes da nossa economia, sendo que a oferta de cursos profissionalizantes nesta área tem sido muito menor do que a necessidade do setor. De acordo com os dados da SUEPRO (gráfico 1), o estado possui apenas 30% de cursos na área da indústria, sendo que a maior parte das matrículas se concentra em Porto Alegre, Novo Hamburgo e Pelotas.

Através da figura 2 notamos que se destacam no gênero metalúrgico os municípios Caxias do Sul, Carlos Barbosa, e Farroupilha. Somente na parte de metal-mecânica/elétrica a região conta com aproximadamente 2400 empresas.

Figura 2. Caracterização do gênero metalúrgico³.

Dessa forma, fica evidente a necessidade urgente da implantação deste projeto como forma de formar melhores profissionais da área técnica.

6. OBJETIVOS:

6.1 Objetivo Geral

O objetivo do Curso Superior de Tecnologia em Processos Metalúrgicos é formar Tecnólogos que atuem nas indústrias metalúrgicas voltadas aos processos de transformação como fundição, soldagem, usinagem e conformação mecânica bem como tratamentos térmicos e de superfície e executar atividades de pesquisa em sua área de formação.

7. PERFIL DO EGRESSO:

O egresso do Curso Superior de Tecnologia em Processos Metalúrgicos pode atuar nos processos de fundição, conformação mecânica, soldagem, usinagem e tratamentos térmicos, dominando a inter-relação entre processo, microestrutura, propriedades e aplicações dos produtos metálicos.

Além disso, este profissional deverá ter conhecimento da seleção e dimensionamento de equipamentos e métodos de fabricação, os quais deverão se
integrar ao planejamento, gestão, controle e comercialização dos processos metalúrgicos.

Finalmente, o egresso deverá possuir competências de gestão ambiental, de pessoas e de processos industriais.

8. PERFIL DO CURSO:

O Curso se propõe a atingir os profissionais da área que queiram aprimorar os conhecimentos tecnológicos da Metalurgia e ingressar na pesquisa aplicada.
9. REPRESENTAÇÃO GRÁFICA DO PERFIL DE FORMAÇÃO:

<table>
<thead>
<tr>
<th>Código</th>
<th>Disciplina</th>
<th>Carga horária</th>
<th>Semestre</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAT01</td>
<td>Cálculo Diferencial e Integral I</td>
<td>90</td>
<td>1º</td>
</tr>
<tr>
<td>POR01</td>
<td>Português Instrumental I</td>
<td>30</td>
<td>1º</td>
</tr>
<tr>
<td>INF01</td>
<td>Informática Básica</td>
<td>30</td>
<td>1º</td>
</tr>
<tr>
<td>QUI01</td>
<td>Química Teórica e Experimental</td>
<td>45</td>
<td>1º</td>
</tr>
<tr>
<td>MEC01</td>
<td>Desenho Técnico</td>
<td>45</td>
<td>1º</td>
</tr>
<tr>
<td>MET01</td>
<td>Introdução à Tecnologia Metalúrgica</td>
<td>30</td>
<td>1º</td>
</tr>
<tr>
<td>MET02</td>
<td>Higiene e Segurança no Trabalho</td>
<td>30</td>
<td>1º</td>
</tr>
<tr>
<td>MAT02</td>
<td>Algebra Linear e Cálculo Numérico</td>
<td>60</td>
<td>2º</td>
</tr>
<tr>
<td>POR02</td>
<td>Português Instrumental II</td>
<td>30</td>
<td>2º</td>
</tr>
<tr>
<td>QUI02</td>
<td>Físico-Química</td>
<td>30</td>
<td>2º</td>
</tr>
<tr>
<td>FIS01</td>
<td>Física I</td>
<td>45</td>
<td>2º</td>
</tr>
<tr>
<td>MAT03</td>
<td>Cálculo Diferencial e Integral II</td>
<td>60</td>
<td>3º</td>
</tr>
<tr>
<td>FIS02</td>
<td>Física II</td>
<td>45</td>
<td>3º</td>
</tr>
<tr>
<td>ING01</td>
<td>Inglês Instrumental I</td>
<td>30</td>
<td>7º</td>
</tr>
<tr>
<td>ING02</td>
<td>Inglês Instrumental II</td>
<td>30</td>
<td>8º</td>
</tr>
</tbody>
</table>

As disciplinas do núcleo de formação científica

O núcleo básico permite aos alunos experiências de ensino-aprendizagem pelas quais os mesmos poderão adquirir conhecimentos e desenvolver competências e habilidades nas áreas de matemática, química, física e informática, inglês e português. O elenco de disciplinas do Núcleo Básico está contemplado com todas estas áreas de conhecimento de forma integrada. Oferece também conhecimentos básicos na área de segurança no trabalho e informações introdutórias do ramo metal mecânico preparando o aluno para a prática de processos e para o mundo do trabalho.
Forma Científica

<table>
<thead>
<tr>
<th>Código</th>
<th>Disciplina</th>
<th>Carga horária</th>
<th>Semestre</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEC02</td>
<td>Desenho Assistido por Computador (CAD)</td>
<td>45</td>
<td>2º</td>
</tr>
<tr>
<td>MEC03</td>
<td>Metrologia</td>
<td>60</td>
<td>2º</td>
</tr>
<tr>
<td>MET04</td>
<td>Metalurgia Mecânica</td>
<td>60</td>
<td>3º</td>
</tr>
<tr>
<td>MET05</td>
<td>Metalurgia Física II</td>
<td>45</td>
<td>3º</td>
</tr>
<tr>
<td>MEC05</td>
<td>Comando Numérico e Automação</td>
<td>45</td>
<td>3º</td>
</tr>
<tr>
<td>MET06</td>
<td>Termodinâmica Metalúrgica</td>
<td>45</td>
<td>4º</td>
</tr>
<tr>
<td>MET09</td>
<td>Solidificação</td>
<td>45</td>
<td>4º</td>
</tr>
<tr>
<td>FIS03</td>
<td>Eletricidade Básica</td>
<td>30</td>
<td>4º</td>
</tr>
<tr>
<td>MET15</td>
<td>Fundamentos de Siderurgia</td>
<td>30</td>
<td>5º</td>
</tr>
<tr>
<td>POR03</td>
<td>Metodologia da Pesquisa</td>
<td>45</td>
<td>6º</td>
</tr>
<tr>
<td>Total de horas</td>
<td></td>
<td>495</td>
<td>19.88%</td>
</tr>
</tbody>
</table>

O núcleo profissionalizante se constitui em extensões e aprofundamentos dos núcleos anteriores visando à formação propriamente dita do profissional. As disciplinas teórico-práticas são destinadas a caracterizar a modalidade Tecnologia em Processos Metalúrgicos, fornecendo ao aluno subsídios para formação de senso crítico e possibilitando a compreensão da influência dos parâmetros e variáveis de processo na qualidade do produto final. A carga
<table>
<thead>
<tr>
<th></th>
<th>Nome da Disciplina</th>
<th>Horas</th>
<th>Ano</th>
</tr>
</thead>
<tbody>
<tr>
<td>MET17</td>
<td>Processos de Conformação II</td>
<td>60</td>
<td>6º</td>
</tr>
<tr>
<td>MET18</td>
<td>Processos de Soldagem I</td>
<td>60</td>
<td>6º</td>
</tr>
<tr>
<td>MET19</td>
<td>Corrosão e Proteção</td>
<td>60</td>
<td>6º</td>
</tr>
<tr>
<td>MET20</td>
<td>Tratamentos de superfície</td>
<td>45</td>
<td>6º</td>
</tr>
<tr>
<td>MET21</td>
<td>Fundição III</td>
<td>60</td>
<td>7º</td>
</tr>
<tr>
<td>MET22</td>
<td>Processos de Conformação III</td>
<td>45</td>
<td>7º</td>
</tr>
<tr>
<td>MET23</td>
<td>Processos de Soldagem II</td>
<td>60</td>
<td>7º</td>
</tr>
<tr>
<td>MET25</td>
<td>Instrumentação e Controle nos Processos Metalúrgicos</td>
<td>45</td>
<td>8º</td>
</tr>
<tr>
<td>MET26</td>
<td>Qualidade e Normatização da Soldagem</td>
<td>45</td>
<td>8º</td>
</tr>
<tr>
<td></td>
<td>Total de horas</td>
<td>1065</td>
<td></td>
</tr>
</tbody>
</table>

A carga horária das disciplinas corresponde a **42,77%** da carga horária total do curso.
<table>
<thead>
<tr>
<th>Código</th>
<th>Disciplina</th>
<th>Carga horária</th>
<th>Semestre</th>
</tr>
</thead>
<tbody>
<tr>
<td>GES01</td>
<td>Empreendedorismo</td>
<td>30</td>
<td>7º</td>
</tr>
<tr>
<td>GES02</td>
<td>Gestão e Planejamento Estratégico</td>
<td>30</td>
<td>7º</td>
</tr>
<tr>
<td>FIL/SOC01</td>
<td>Ética e relações humanas no trabalho</td>
<td>30</td>
<td>8º</td>
</tr>
<tr>
<td>GES03</td>
<td>Gestão Ambiental</td>
<td>30</td>
<td>8º</td>
</tr>
<tr>
<td>GES04</td>
<td>Gestão da Qualidade</td>
<td>60</td>
<td>8º</td>
</tr>
</tbody>
</table>

Total de horas: 180
7.23%

São conhecimentos científicos, sociológicos, de gestão e ambientais necessários para a formação do profissional e devem garantir o desenvolvimento das competências e habilidades estabelecidas nas mesmas Diretrizes.
10. REQUISITOS DE INGRESSO:

A admissão aos cursos da Instituição será mediante processo seletivo aberto a candidatos que tenham concluído o Ensino Médio por meio de classificação em vestibular, ENEM, SISU, observados os critérios definidos em edital. Além disto, poderão ser admitidos os alunos que forem classificados e aprovados através dos Programas de Ações Afirmativas.

Quando o número de candidatos classificados não preencher as vagas fixadas pela Instituição e constantes do Edital do Processo Seletivo, poderá ser aberto novo processo, desde que haja prévia autorização. O Edital do Processo Seletivo definirá a forma de classificação dos candidatos no caso da ocorrência de empate.

Outra forma de acesso é via transferência. Será aceita a transferência de aluno oriundo de outra instituição de ensino, nacional ou estrangeira, para curso da mesma área e habilitação, mediante adaptação ou complementação de créditos, realizadas de acordo com as normas do Conselho Nacional de Educação e parecer da Coordenação do Curso.

Será obrigatória a matrícula em todas as componentes curriculares no primeiro semestre.

10.1 DA MATRÍCULA

Para o Curso Superior de Tecnologia em Processos Metalúrgicos do IFRS - Campus Caxias do Sul adota-se o regime semestral de matrícula por disciplina.

A matrícula que consiste no ato formal de ingresso no curso é obrigatória, semestral e por disciplina, não havendo renovação automática. No primeiro semestre do Curso, deverão ser cursadas, obrigatoriamente, todas as disciplinas. Os documentos exigidos e o cronograma serão descritos no edital de matrícula de referência.

Qualquer irregularidade na documentação exigida no ato ou após a matrícula resultará na perda da vaga, o que dá direito, caso haja tempo hábil, ao IFRS - Campus Caxias, convocar imediatamente outro candidato.

É permitida a matrícula por procuração, ficando o aluno responsável por todas as consequências daí decorrentes. As matrículas ficam limitadas em até 35 (trinta e cinco) alunos por turma e/ou disciplina.
11. FREQUÊNCIA MÍNIMA OBRIGATÓRIA:

A frequência mínima está de acordo com a legislação vigente. Sendo que a justificativa das faltas somente será concedida nos casos previstos em lei, mediante pedido a ser protocolado pelo aluno ou por seu representante, com apresentação de documentação original comprobatória.

12. PRESSUPOSTOS DA ORGANIZAÇÃO CURRICULAR

MATRIZ CURRICULAR

<table>
<thead>
<tr>
<th>Semestre</th>
<th>Código</th>
<th>Disciplina</th>
<th>CH</th>
<th>Pré-requisitos</th>
</tr>
</thead>
<tbody>
<tr>
<td>1º</td>
<td>MAT01</td>
<td>Cálculo Diferencial e Integral I</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td></td>
<td>POR01</td>
<td>Português Instrumental I</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>INF01</td>
<td>Informática Básica</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>QUI01</td>
<td>Química Teórica e Experimental</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MEC01</td>
<td>Desenho Técnico</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MET01</td>
<td>Introdução à Tecnologia Metalúrgica</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MET02</td>
<td>Higiene e Segurança no Trabalho</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Carga Horária Total do Semestre:</td>
<td>300</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semestre</th>
<th>Código</th>
<th>Disciplina</th>
<th>CH</th>
<th>Pré-requisitos</th>
</tr>
</thead>
<tbody>
<tr>
<td>2º</td>
<td>MAT02</td>
<td>Algébrica Linear e Cálculo Numérico</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>POR02</td>
<td>Português Instrumental II</td>
<td>30</td>
<td>POR01</td>
</tr>
<tr>
<td></td>
<td>QUI02</td>
<td>Físico-Química</td>
<td>30</td>
<td>QUI01</td>
</tr>
<tr>
<td></td>
<td>FIS01</td>
<td>Física I</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MET03</td>
<td>Metalurgia Física I</td>
<td>45</td>
<td>QUI01</td>
</tr>
<tr>
<td></td>
<td>MEC02</td>
<td>Desenho Assistido por Computador (CAD)</td>
<td>45</td>
<td>INF01; MEC01</td>
</tr>
<tr>
<td></td>
<td>MEC03</td>
<td>Metrologia</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Carga Horária Total do Semestre:</td>
<td>315</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semestre</th>
<th>Código</th>
<th>Disciplina</th>
<th>CH</th>
<th>Pré-requisitos</th>
</tr>
</thead>
<tbody>
<tr>
<td>3º</td>
<td>MAT03</td>
<td>Cálculo Diferencial e Integral II</td>
<td>60</td>
<td>MAT01</td>
</tr>
<tr>
<td></td>
<td>FIS02</td>
<td>Física II</td>
<td>45</td>
<td>FIS01;MAT01</td>
</tr>
<tr>
<td></td>
<td>MET04</td>
<td>Metalurgia Mecânica</td>
<td>60</td>
<td>MET03</td>
</tr>
<tr>
<td></td>
<td>MET05</td>
<td>Metalurgia Física II</td>
<td>45</td>
<td>MET03</td>
</tr>
<tr>
<td></td>
<td>MEC04</td>
<td>Processos de Usinagem I</td>
<td>60</td>
<td>MEC03</td>
</tr>
<tr>
<td></td>
<td>MEC05</td>
<td>Comando Numérico e Automação</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Carga Horária Total do Semestre:</td>
<td>315</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semestre</th>
<th>Código</th>
<th>Disciplina</th>
<th>CH</th>
<th>Pré-requisitos</th>
</tr>
</thead>
<tbody>
<tr>
<td>4º</td>
<td>MET06</td>
<td>Termodinâmica Metalúrgica</td>
<td>45</td>
<td>MET05</td>
</tr>
<tr>
<td>Código</td>
<td>Nome do Curso</td>
<td>Horas</td>
<td>Código</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>---------------</td>
<td>-------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>MET07</td>
<td>Tratamentos Térmicos I</td>
<td>60</td>
<td>MET05</td>
<td></td>
</tr>
<tr>
<td>MET08</td>
<td>Metalografia I</td>
<td>45</td>
<td>MET03</td>
<td></td>
</tr>
<tr>
<td>MET09</td>
<td>Solidificação</td>
<td>45</td>
<td>MET03</td>
<td></td>
</tr>
<tr>
<td>MEC06</td>
<td>Processos de Usinagem II</td>
<td>60</td>
<td>MEC04</td>
<td></td>
</tr>
<tr>
<td>MET10</td>
<td>Ensaios Mecânicos (ED/END)</td>
<td>45</td>
<td>MET04</td>
<td></td>
</tr>
<tr>
<td>FIS03</td>
<td>Eletricidade Básica</td>
<td>30</td>
<td>FIS01</td>
<td></td>
</tr>
</tbody>
</table>

Carga Horária Total do Semestre: 330

<table>
<thead>
<tr>
<th>Curso</th>
<th>Carga Horária</th>
</tr>
</thead>
<tbody>
<tr>
<td>MET11</td>
<td>45 MET07</td>
</tr>
<tr>
<td>MET12</td>
<td>45 MET08</td>
</tr>
<tr>
<td>MET13</td>
<td>45 MET09</td>
</tr>
<tr>
<td>MET14</td>
<td>60 MET04</td>
</tr>
<tr>
<td>MET15</td>
<td>45 MET06</td>
</tr>
<tr>
<td>MEC07</td>
<td>60 MEC02; MEC05; MEC06</td>
</tr>
</tbody>
</table>

Carga Horária Total do Semestre: 300

<table>
<thead>
<tr>
<th>Curso</th>
<th>Carga Horária</th>
</tr>
</thead>
<tbody>
<tr>
<td>MET16</td>
<td>60 MET13</td>
</tr>
<tr>
<td>MET17</td>
<td>60 MET14</td>
</tr>
<tr>
<td>MET18</td>
<td>60 MET06; FIS03</td>
</tr>
<tr>
<td>MET19</td>
<td>60 MET06</td>
</tr>
<tr>
<td>MET20</td>
<td>45 MET06; MET11</td>
</tr>
<tr>
<td>POR03</td>
<td>30 POR02</td>
</tr>
</tbody>
</table>

Carga Horária Total do Semestre: 315

<table>
<thead>
<tr>
<th>Curso</th>
<th>Carga Horária</th>
</tr>
</thead>
<tbody>
<tr>
<td>MET21</td>
<td>60 MET16</td>
</tr>
<tr>
<td>ING01</td>
<td>30</td>
</tr>
<tr>
<td>GES01</td>
<td>30</td>
</tr>
<tr>
<td>MET22</td>
<td>45 MET17</td>
</tr>
<tr>
<td>MET23</td>
<td>60 MET18</td>
</tr>
<tr>
<td>GES02</td>
<td>30</td>
</tr>
<tr>
<td>MET24</td>
<td>60</td>
</tr>
</tbody>
</table>

Carga Horária Total do Semestre: 315

<table>
<thead>
<tr>
<th>Curso</th>
<th>Carga Horária</th>
</tr>
</thead>
<tbody>
<tr>
<td>MET25</td>
<td>45 FIS03</td>
</tr>
<tr>
<td>FIL/SOC01</td>
<td>30</td>
</tr>
<tr>
<td>ING02</td>
<td>30</td>
</tr>
<tr>
<td>MET26</td>
<td>45 MET18</td>
</tr>
<tr>
<td>GES03</td>
<td>30</td>
</tr>
<tr>
<td>GES04</td>
<td>60</td>
</tr>
<tr>
<td>MET27</td>
<td>60</td>
</tr>
</tbody>
</table>

Carga Horária Total do Semestre: 300

Carga Horária do estágio Curricular: 400

Carga Horária Total do Curso: 2890
13. PROGRAMAS POR DISCIPLINAS

13.1 EMENTAS E BIBLIOGRAFIA:

<table>
<thead>
<tr>
<th>Disciplina:</th>
<th>CÂLCULO DIFERENCIAL E INTEGRAL I</th>
<th>Código: MAT01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natureza:</td>
<td>Teórica</td>
<td></td>
</tr>
<tr>
<td>Carga Horária:</td>
<td>90 horas</td>
<td></td>
</tr>
</tbody>
</table>

Objetivos: Revisar as principais funções elementares bem como seus gráficos, domínio e imagem e introduzir os conceitos iniciais do cálculo diferencial e integral visando a subsidiar o estudo da Tecnologia em sua modelagem diferencial e integral.

Ementa: Análise de funções, operações algébricas, estudo de gráficos, conceito de limite, derivada de funções elementares, aplicações de derivadas, integrais e suas aplicações. Noções de séries de Taylor e de Mclaurin e suas aplicações.

Bibliografia Básica:

Bibliografia Complementar:

6. GUIDORIZZI, H. L. *Curso de Cálculo Um*, V.1 , V.2, V.3 e V.4. Editora LTC.
<table>
<thead>
<tr>
<th>Natureza: Teórica e Prática</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga Horária: 30 horas</td>
</tr>
</tbody>
</table>

Objetivos: Familiarizar o educando com noções e conceitos básicos em informática, bem como possibilitá-lo desenvolver habilidades na utilização de softwares aplicativos e utilitários que possam ser utilizados como ferramentas de trabalho em outras disciplinas e em sua vida profissional.

Ementa: Noções Gerais de Hardware, dispositivos de entrada e saída, Memória ROM, Memória RAM, disco rígido, processadores, placa mãe. Sistemas Operacionais; configurações do sistema; personalização da área de trabalho. Explorar e criar pastas e subpastas, organização de arquivos. Editor de texto: ferramentas de recurso e formatação de texto, salvar documentos, carregar arquivos para o editor de texto. Ferramentas de atalho, proteção de texto, criar tabelas, cartas e outros documentos, impressão de texto. Planilha Eletrônica: ferramentas e recursos da planilha eletrônica; criação de planilhas de cálculo, criação de planilhas de controle; formatação da planilha; proteção da planilha; carregar dados na planilha; criação de uma planilha dinâmica; utilização de fórmulas prontas; Gráficos. Geradores de Apresentações: Ferramentas de formatação de slides, comandos principais, exibir uma apresentação. Internet: navegador, como pesquisar na internet, e-mail, copiar e salvar arquivos, sites de busca.

Bibliografia Básica:

Bibliografia Complementar:

3. ALCALDE, E.; GARCIA, M.; PENUelas, S. *Informática Básica*. São Paulo:
Disciplina: **QUÍMICA TEÓRICA E EXPERIMENTAL** | Código: **QUI01**

Natureza: **Teórica e Prática**

Carga Horária: **45 horas**

Objetivos: Estudar os princípios da Química Geral e sua prática.

Bibliografia Básica:

Bibliografia Complementar:

Disciplina: **PORTUGUÊS INSTRUMENTAL I** | Código: **POR01**

Natureza: **Teórica**

Carga Horária: **30 horas**

Objetivos: Facilitar, aperfeiçoar e agilizar o processo de construção do conhecimento através da leitura e de práticas instrumentais. Leitura, interpretação e reelaboração de textos de livros didáticos. Exercitar a leitura e a escrita de variados gêneros de texto.
Apresentar e problematizar os aspectos estruturais da língua portuguesa, levando em consideração o contexto. Apresentar a função da estruturação do texto (escrito e oral) de acordo com as situações específicas.

Bibliografia Básica:

Bibliografia Complementar:

Objetivos: Desenvolver a capacidade de ler e executar desenhos técnicos e de engenharia com ênfase no desenvolvimento da visualização espacial. Proporcionar conhecimentos práticos sobre o método de concepção e as normas que regem o desenho técnico, com ênfase em desenho técnico mecânico.

Bibliografia Básica:

Bibliografia Complementar:

Disciplina: INTRODUÇÃO À TECNOLOGIA
Código: MET01
Natureza: Teórica

Carga Horária: 30 horas

Objetivos: Orientar os alunos recém admitidos sobre o curso e a profissão. Atribuições do Tecnólogo em Processos Metalúrgicos. Apresentar as características e perspectivas da tecnologia dos processos metalúrgicos. Introduzir as principais formas de processamento metalúrgico, tendo em vista as suas aplicações básicas e avançadas.

Ementa: Apresentação do conjunto de atividades associadas com a tecnologia metalúrgica. Identificação e descrição das interseções com as outras tecnologias. Introdução de tópicos específicos da tecnologia metalúrgica.

Bibliografia Básica:

Disciplina: HIGIENE E SEGURANÇA NO TRABALHO | Código: MET02

| Natureza: | Teórica |
| Carga Horária: | 30 horas |

Objetivos: Proporcionar ao educando capacidade para interpretar e aplicar as leis, decretos, normas regulamentadoras e portarias na segurança do trabalho. Planejar e aplicar sistemas de segurança do trabalho. Desenvolver e aplicar EPI’s, adequados aos postos de trabalho. Desenvolver e aplicar sistemas de proteção contra acidentes de trabalho em máquinas e equipamentos. Desenvolver e aplicar melhorias nos postos de trabalho. Planejar e elaborar programas de proteção contra riscos ambientais.

Ementa: Saúde e Segurança no Trabalho; Normas regulamentadoras. Riscos Ambientais. Acidentes no trabalho e doenças profissionais: causas, conseqüências, análise e legislação. Equipamentos indispensáveis (EPI, EPC).

Bibliografia Básica:

Bibliografia Complementar:

1. HOEPPNER M. G. *Normas Reguladoras Relativas à Segurança e Medicina do Trabalho*. Icne Editora. 4ª Edição. 2010.
2. PAOLESCHI, B. *Cipa - Guia Pratico de Segurança Do Trabalho*. Comissão
<table>
<thead>
<tr>
<th>Disciplina: ÁLGBRA LINEAR E CÁLCULO</th>
<th>Código: MAT02</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natureza: Teórica</td>
<td></td>
</tr>
<tr>
<td>Carga Horária: 60 horas</td>
<td></td>
</tr>
</tbody>
</table>

Objetivos: Estudar o espaço vetorial através da álgebra matricial, utilizando o cálculo numérico como ferramenta.

Bibliografia Básica:

Bibliografia Complementar:

Disciplina: **PORTUGUÊS INSTRUMENTAL II** | Código: **POR02**
Natureza: **Teórica**
Carga Horária: **30 horas**

Objetivos: Capacitar o aluno para uma correta compreensão e interpretação de textos e conhecimentos necessários para sua elaboração. Aprimoramento da leitura compreensiva, interpretativa e crítica de textos persuasivos, informativos e técnicos, tendo em vista a produção dessa tipologia textual em conformidade com a gramática de uso.

Ementa: Análise e Interpretação de textos. O padrão culto da língua portuguesa. Produção textual: descrição, narração, dissertação. Prática como componente curricular.

Bibliografia Básica:

[3] **FIORIN, José Luiz; SAVIOLI, Francisco Platão.** *Para entender o texto*. São Paulo:
Bibliografia Complementar:

Disciplina: FÍSICO-QUÍMICA
Código: QUI02
Natureza: Teórica
Carga Horária: 30 horas

Objetivos: Introduzir o estudo dos sistemas materiais, de suas propriedades e transformações, tanto do ponto de vista microscópico ou interno como do ponto de vista macroscópico ou externo.

Bibliografia Básica:

Disciplina: **FISICA I**
Código: **FIS01**

<table>
<thead>
<tr>
<th>Natureza:</th>
<th>Teórica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga Horária:</td>
<td>45 horas</td>
</tr>
</tbody>
</table>

Objetivos: Estudar conceitos básicos de mecânica de pontos materiais e corpos rígidos.

Ementa: Medidas, grandezas físicas e unidades. Mecânica: Força, trabalho e máquinas simples; equilíbrio de forças; dinâmica; vetores e movimento em uma e duas dimensões; energia e quantidade de movimento. Movimento de rotação: Inércia rotacional, torque e momento angular.

Bibliografia Básica:

Bibliografia Complementar:

Disciplina: METALURGIA FÍSICA I | Código: MET03
Natureza: Teórica
Carga Horária: 45 horas

Objetivos: Familiarizar o educando com os princípios da metalurgia física e da ciência dos materiais. Habilitá-lo a pensar em termos da cristalografia dos metais e compostos associando a essa a estrutura de defeitos, as propriedades dos materiais. Introduzi-lo à determinação prática das propriedades dos materiais. Dar ao educando a compreensão dos fenômenos nos microscópicos que acompanham cada tipo de transformação de fase importante em metalurgia.

Bibliografia Básica:

Bibliografia Complementar:

Disciplina: DESENHO ASSISTIDO POR COMPUTADOR (CAD)

<table>
<thead>
<tr>
<th>Código: MEC02</th>
</tr>
</thead>
</table>

Natureza: Teórica
Carga Horária: 45 horas

Objetivos: Desenvolver o entendimento geral sobre os conceitos fundamentais da tecnologia CAD através de softwares comerciais utilizados em projetos.

Ementa:
- Modelador de sólidos 3D. Configurações de tela e menus de ferramentas de esboço. Demonstração da modelagem de uma peça. Ferramentas de modelamento.
- Ferramentas avançadas: espelhamento, padrão linear e circular, construção de sólidos por revolução de superfícies. Desenho e vistas principais obtidas a partir do sólido modelado.
- Criando montagem a partir de peças sólidas modeladas. Principais ferramentas de montagem.

Bibliografia Básica:

Bibliografia Complementar:

2. **Apostila** a ser definida pelo professor da disciplina.
Disciplina: **METROLOGIA**
Código: **MEC03**

Natureza: Teórica e Prática

Carga Horária: 60 horas

Objetivos: Dar condições ao educando de se relacionar tecnicamente adotando conceitos metrológicos corretos, além de capacita-lo para desenvolver atividades de medição e calibração das principais grandezas dentro dos princípios adequados de confiabilidade e rastreabilidade metrológicas.

Ementa: Conceitos básicos; estrutura metrológica e sistema internacional de unidades; medir: processo de medição e obtenção de resultados; sistema generalizado de medição; incerteza de medição; definições, fontes de erro, interpretação e cálculo; causas de erro e seus tratamentos; combinação e propagação de erros; calibração de sistemas de medição; medição de comprimento, temperatura, pressão e grandezas elétricas; outras grandezas; metrologia e chão de fábrica: técnicas de medição por coordenadas, controle estatístico de processo.

Bibliografia Básica:

Bibliografia Complementar:

[2] INMETRO. *Vocabulário internacional de termos fundamentais e gerais de metrologia*.

3º Semestre

Disciplina: **CÁLCULO DIFERENCIAL E INTEGRAL II**
Código: **MAT03**

Natureza: Teórica

Carga Horária: 60 horas

Objetivos: Proporcionar ao educando a generalização dos conceitos de limite, continuidade, derivada e integral para o caso de funções de várias variáveis com vista à suas aplicações na Tecnologia.

Ementa: Derivadas parciais, Derivada direcional, Gradiente, Divergente e Rotacional,
Integral de Linha; Noções de Integrais duplas e triplas.

Bibliografia Básica:

Bibliografia Complementar:

Disciplina: METALURGIA MECÂNICA
Código: MET04

Natureza: Teórica

Carga Horária: 60 horas

Objetivos: Fornecer ao educando os conhecimentos necessários à compreensão dos fenômenos associados às deformações elásticas e plásticas dos materiais. Relacionar mecanismos de endurecimento com as solicitações externas.

Ementa: Definição de momento de uma força. Equivalência entre conjuntos de forças. Equilíbrio de ponto material e de corpo rígido, no plano e no espaço. Aplicação da geometria das massas: momentos estáticos e baricentros, momentos e produtos de

Bibliografia Complementar:

Bibliografia Básica:

Bibliografia Complementar:

<table>
<thead>
<tr>
<th>Disciplina:</th>
<th>METALURGIA FÍSICA II</th>
<th>Código: MET05</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natureza:</td>
<td>Teórica</td>
<td></td>
</tr>
<tr>
<td>Carga Horária:</td>
<td>45 horas</td>
<td></td>
</tr>
<tr>
<td>Objetivos:</td>
<td>Proporcionar ao educando o conhecimento técnico necessário para a compreensão das transformações em estado sólido e sua relação com as propriedades mecânicas do material. Compreender o processo de formação das microestruturas dos metais e ligas metálicas. Adotar procedimentos de controle de processo para modificação fases e micro-constituintes.</td>
<td></td>
</tr>
</tbody>
</table>

Bibliografia Básica:

Bibliografia Complementar

<table>
<thead>
<tr>
<th>Disciplina: PROCESSOS DE USINAGEM I</th>
<th>Código: MEC04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natureza: Teórica e prática</td>
<td></td>
</tr>
<tr>
<td>Carga Horária: 60 horas</td>
<td></td>
</tr>
<tr>
<td>Objetivos:</td>
<td></td>
</tr>
<tr>
<td>Introduzir os conceitos básicos de Usinagem.</td>
<td></td>
</tr>
</tbody>
</table>

Bibliografia Básica:

Disciplina: **Comando Numérico e Automação** | Código: **MEC05**

<table>
<thead>
<tr>
<th>Natureza:</th>
<th>Teórica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga Horária:</td>
<td>45 horas</td>
</tr>
</tbody>
</table>

Objetivos: Estudar máquinas e equipamentos com comandos numéricos computadorizados.

Ementa: Histórico das máquinas-ferramenta. Tipos de comandos numéricos (CN), controle numérico computadorizado (CNC). Características da unidade de comando, acionamentos, magazine de ferramentas, transdutores. Programação manual de uma máquina-ferramenta a CNC. Planejamento da usinagem de uma peça com máquinas-ferramenta a CNC. Operação de máquina-ferramenta a CNC. Planejamento da manutenção de uma máquina-ferramenta a CNC.

Bibliografia Básica:

Bibliografia Complementar:

4. INDÚSTRIAS ROMI S/A. *Caderno de exercícios: linha CENTUR MACH-8L.*

4º Semestre

<table>
<thead>
<tr>
<th>Disciplina:</th>
<th>TERMODINÂMICA METALÚRGICA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Código:</td>
<td>MET06</td>
</tr>
</tbody>
</table>

Natureza: Teórica

Carga Horária: 45 horas

Objetivos: Aplicar os conceitos termodinâmicos e físico-químicos aos sistemas utilizados em processos metalúrgicos; sistemas homogêneos (gases de fornos, líquidos metálicos, escória) e sistemas heterogêneos (metal composto metálico/gás; metal composto não metálico/gás). Apresentar as equações básicas de transporte de momento, calor e massa e mostrar como elas são aplicáveis aos tópicos de metalurgia.

Bibliografia Básica:

Disciplina: TRATAMENTOS TÉRMICOS I | Código: MET07
Natureza: Teórica e prática
Carga Horária: 60 horas

Objetivos: Capacitar o educando ao estudo dos diferentes tipos de tratamentos térmicos nos aços visando a obtenção de propriedades mecânicas desejáveis.

Bibliografia Básica:

Bibliografia Complementar:
Natureza: Teórica e prática

| Carga Horária: 45 horas |

Objetivos:
Capacitar o educando para a prática das técnicas metalográficas. Identificar fases, partículas de segunda fase e inclusões.

Ementa:

Bibliografia Básica:

Bibliografia Complementar:

Disciplina: SOLIDIFICAÇÃO
Código: MET09

| Natureza: Teórica |

| Carga Horária: 45 horas |

Objetivos:
Introduzir conceitos básicos de solidificação de metais e ligas metálicas capacitando o educando ao controle e entendimento dos processos de fundição.

Ementa:
térmica. Segregação e Defeitos. Estado atual e novas tendências de pesquisa em solidificação.

Bibliografia Básica:

Bibliografia Complementar:

<table>
<thead>
<tr>
<th>Disciplina: PROCESSOS DE USINAGEM II</th>
<th>Código: MEC06</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natureza: Teórica e prática</td>
<td></td>
</tr>
<tr>
<td>Carga Horária: 60 horas</td>
<td></td>
</tr>
<tr>
<td>Objetivos: Capacitar o educando para a prática de usinagem. Estudar os parâmetros de corte, analisar condições de ferramentas e aperfeiçoar processos.</td>
<td></td>
</tr>
<tr>
<td>Ementa: Determinação das condições de usinagem e número de dentes da fresa. Cálculo das forças e potências de corte. Usinabilidade dos materiais, mecanismo de desgaste de ferramenta, variáveis da influência na vida da ferramenta. Determinação das condições econômicas de usinagem. Estratégias de usinagem. Usinagem de novos materiais (compósitos ferros fundidos vermicular, cerâmicas). Operações de fresamento.</td>
<td></td>
</tr>
<tr>
<td>Bibliografia Básica:</td>
<td></td>
</tr>
</tbody>
</table>
Disciplina: **ENSEAIOS MECÂNICOS (ED/END)** | Código: **MET10**
---|---
Natureza: **Teórica e prática**
Carga Horária: **45 horas**

Bibliografia Básica:

Bibliografia Complementar:

Disciplina: **ELETRICIDADE BÁSICA** | Código: **FIS03**

Natureza: Teórica

Carga Horária: 30 horas

Objetivos: Facilitar ao educando a compreensão dos conceitos dos principais fenômenos elétricos, bem como habilitá-lo para o cálculo matemático da grandeza de tais fenômenos. Capacitar o educando a manusear os instrumentos básicos de medidas elétricas, facilitando a sua familiarização com as grandezas elétricas. Habilitar o educando para o cálculo de circuitos elétricos de corrente contínua.

Bibliografia Básica:

Bibliografia Complementar:

5º Semestre

Disciplina: **TRATAMENTOS TÉRMICOS II** | Código: **MET11**

Natureza: Teórica e prática
<table>
<thead>
<tr>
<th>Carga Horária: 45 horas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objetivos: Capacitar o aluno ao estudo das microestruturas dos materiais não ferrosos e ao emprego de tratamentos térmicos capazes de alterá-los, visando a obtenção de propriedades mecânicas desejáveis.</td>
</tr>
<tr>
<td>Ementa: Metais puros. Estrutura, influência de elementos de liga e impurezas. Alumínio, cobre, níquel, magnésio e ligas, metais e ligas de baixo ponto de fusão, metais e ligas refratárias e resistentes à corrosão, diagramas de fases, tratamentos térmicos e mecânicos.</td>
</tr>
<tr>
<td>Bibliografia Básica:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bibliografia Complementar:</th>
</tr>
</thead>
</table>

Disciplina: METALOGRAFIA II
Código: MET12
Natureza: Teórica e prática
Carga Horária: **45 horas**

| **Objetivos:** Capacitar o aluno à prática das técnicas metalográficas. Compreender a relação processo - microestrutura – propriedades em ligas não ferrosas. |
| **Ementa:** Técnicas metalográficas de preparação de amostras de ligas não ferrosas para observação de microestruturas comuns no microscópio ótico. Uso e preparação de reagentes químicos apropriados para cada liga não ferrosa. Microestruturas das ligas não ferrosas. |
| **Bibliografia Básica:** |

Bibliografia Complementar:

Disciplina: FUNDIÇÃO I
Código: MET13

Natureza: Teórica e prática

Carga Horária: 45 horas

Objetivos: Dar ao estudante uma idéia geral do processo de fundição. Mostrar a importância de um trabalho de Engenharia de Processos, desde a concepção do fundamental até a formulação das areias, escolha do método de moldagem, recuperação da areia, controles e defeitos, para a produção de peças fundidas economicamente. Prática de fundição em areia verde para permitir ao estudante a verificação e aplicação de conhecimentos teóricos. Análise dos defeitos, causas e soluções.

Ementa: Histórico do processo. Importância, vantagens, limitações, perspectivas e futuro do processo de fundição no mundo e no Brasil. Classificação dos processos de fundição. Modelos, moldes e matrizes. Tipos de fornos e ferramentas utilizadas nos processos de fundição. Constituintes, preparo recondicionamento e controles de areia e de fundição ligadas com argila. Modelagem, mecanização das operações e transporte. Macharia e processos especiais de moldagem: processo areia-óleo, cura a frio, shell, hot box, CO₂, SO₂, cold box, areia-cimento, polistireno e a vácuo. Aula prática de moldagem em areia verde.

Bibliografia Básica:

Bibliografia Complementar:

<table>
<thead>
<tr>
<th>Disciplina: PROCESSOS DE CONFORMAÇÃO I</th>
<th>Código: MET14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natureza: Teórica e prática</td>
<td></td>
</tr>
<tr>
<td>Carga Horária: 60 horas</td>
<td></td>
</tr>
</tbody>
</table>

Objetivos: Qualificar os futuros tecnólogos metalúrgicos nos assuntos de forjaria, laminação, para o seu bom desempenho profissional quando solicitados nesta área da Transformação Mecânica de Metais.

Bibliografia Básica:

Bibliografia Complementar:

Disciplina: FUNDAMENTOS DE SIDERURGIA Código: MET15
Natureza: Teórica
Carga Horária: 45 horas
Objetivos: Introduzir os conceitos de siderurgia.
Bibliografia Básica:
Disciplina: **TÉCNICAS CAM E USINAGEM III**
Código: **MEC07**

Natureza: Teórica e prática

Carga Horária: 60 horas

Objetivos: Capacitar o educando para a prática de usinagem em máquinas CNC utilizando softwares CAM.

Bibliografia Básica:

Bibliografia Complementar:

[2] A bibliografia complementar será indicada pelo professor da disciplina sob forma de apostilas de comandos e exercícios de simulação em Software CAM.

<table>
<thead>
<tr>
<th>6º Semestre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disciplina:</td>
</tr>
<tr>
<td>Código:</td>
</tr>
<tr>
<td>Natureza:</td>
</tr>
<tr>
<td>Carga Horária:</td>
</tr>
</tbody>
</table>

Objetivos: Transmitir os conhecimentos teóricos e exemplos práticos para que o aluno consiga resolver problemas relacionados ao controle do metal fundido e parâmetros de processo.

Bibliografia Básica:

Disciplina: **PROCESSOS DE CONFORMAÇÃO II**
Código: **MET17**

Natureza: Teórica e prática
Carga Horária: 60 horas

Objetivos: Introduzir o educando aos processos de extrusão, trefilação, estampagem, tixoforjamento e metalurgia do pó. Aplicar modelos de cálculo que tem como finalidade fornecer subsídios para otimização dos processos.

Bibliografia Básica:

5. SCHAEFFER, L. *Conformação de Chapas Metálicas.* Editora Imprensa Livre. 1ª

Bibliografia Complementar:

Disciplina: PROCESSOS DE SOLDAGEM I | Código: MET18
Natureza: Teórica e prática
Carga Horária: 60 horas

Objetivos: Introduzir o educando aos princípios e fundamentos do processo de soldagem, habilitando o mesmo à interpretação da simbologia utilizada bem como interferir nos parâmetros de processo visando solucionar problemas e defeitos causados.

Bibliografia Básica:

[1] MARQUES, P. V. MODENESI P. J. BRACARENSE, A. Q. Soldagem:
Disciplina: **CORROSÃO E PROTEÇÃO**
Código: MET19

Natureza: Teórica e prática

Carga Horária: 60 horas

Objetivos: Fornecer ao educando os conhecimentos teóricos relacionado à corrosão dos materiais e os problemas por ela gerados, habilitando-o para a compreensão e aplicação dos métodos de proteção.

Bibliografia Básica:

Fundamentos e Tecnologia. UFMG. 3ª Edição. 2009.

Bibliografia Complementar:

Bibliografia Complementar:

Disciplina: **TRATAMENTOS DE SUPERFÍCIE** | Código: **MET20**

Natureza: **Teórica**

Carga Horária: **45 horas**

Objetivos: Introduzir os conceitos fundamentais dos principais tratamentos de superfície e suas aplicações, possibilitando ao aluno o entendimento destes processos e seus usos na prática industrial.

Bibliografia Básica:

Bibliografia Complementar:

Disciplina: METODOLOGIA DA PESQUISA	**Código:** POR03
Natureza: Teórica
Carga Horária: 30 horas

Objetivos: Instrumentalizar o aluno para que este, ao final do semestre, seja capaz de compreender, planejar, executar e sistematizar um trabalho científico.

Ementa: O método científico. O uso das Normas da ANBT para a padronização de: referências, citações, resumos científicos, artigos científicos. Seminários: oralidade e uso de recursos digitais e audiovisuais. Projetos Técnicos e de Pesquisa.

Bibliografia Básica:
1. ABNT. NBR:6023, 6004, 6027, 6028, 10520, 1474.

Bibliografia Complementar:

7º Semestre

Disciplina: FUNDIÇÃO III	**Código:** MET21
Natureza: Teórica e Prática
Carga Horária: 60 horas

Objetivos: Fornecer ao educando os conceitos teóricos que relacionam as variáveis do
processo de solidificação com a formação de microestruturas e propriedades mecânicas do fundido. Introduzir conceitos básicos de modelamento e softwares comerciais de simulação de processos de solidificação de ligas metálicas. Aulas práticas com softwares de simulação relativo ao processo de solidificação.

Ementa: Fundição em moldes permanentes. Fundição por gravidade, fundição sob pressão. Tipos de defeitos, causas e soluções. Estudo da macroestrutura e microestrutura bruta de fusão. Transição colunar/equiaxial. Propriedades mecânicas do material fundido (comparação com demais processos de fabricação). Curvas de resfriamento. Parâmetros de solidificação, (Velocidade da isoterma liquidus (V_L), Gradiente térmico à frente da isoterma (G_v) e Taxa de resfriamento (T_L)). Influência das variáveis de processo na formação de estruturas e sua relação com as propriedades mecânicas do material. Modelagem e simulação dos processos de fundição.

Bibliografia Básica:

Bibliografia Complementar:

[3] A bibliografia complementar será indicada pelo professor da disciplina sob forma de apostilas de comandos e exercícios de simulação em Software CAE/CAM.
textos técnico-científicos específicos da área de sua formação.

Ementa: Revisão Gramatical da Língua Inglesa. Inglês Instrumental. Vocabulário técnico e morfo-sintaxe básica para leitura de manuais e catálogos.

Bibliografia Básica:

Bibliografia Complementar:

[3] BROWN, H. D.; Principles of Language Learning And Teaching. 5ª ED. Editora PEARSON.

Disciplina: EMPREENDEDORISMO | Código: GES01

Natureza: Teórica

Carga Horária: 30 horas

Objetivos: Familiarizar o aluno com a ação do empreendedor, capacitando-o para reconhecer e aproveitar oportunidades de negócio, criar e gerenciar empreendimentos.

Bibliografia Básica:

[3] HARVARD BUSINESS REVIEW. *Empreendedorismo e Estratégia*. Editora:
Campus. 1ª Edição. 2002.

Bibliografia Complementar:

<table>
<thead>
<tr>
<th>Disciplina: PROCESSOS DE CONFORMAÇÃO III</th>
<th>Código: MET22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natureza: Teórica</td>
<td></td>
</tr>
<tr>
<td>Carga Horária: 60 horas</td>
<td></td>
</tr>
<tr>
<td>Objetivos: Fornecer fundamentos para permitir a simulação de processos munindo o futuro tecnólogo de condições para melhorar a qualidade dos produtos conformados objetivando para a empresa um maior poder de competitividade. O aluno tem a disposição Laboratório de Conformação Mecânica com programas de computação relativo aos processos assim como dados referentes à conformação de diversos materiais.</td>
<td></td>
</tr>
<tr>
<td>Bibliografia Básica:</td>
<td></td>
</tr>
</tbody>
</table>

60
Disciplina: **PROCESSOS DE SOLDAGEM II**
Código: **MET23**

Natureza: **Teórica e prática**

Carga Horária: **60 horas**

Objetivos: Habilitar ao aluno para a prática da soldagem em MIG/MAG e TIG através de aulas práticas. Identificar defeitos e suas causas propondo soluções de acordo com os conhecimentos teóricos adquiridos. Compreender os efeitos do processo na microestrutura do material e sua influência nas propriedades.

Ementa: Processo MIG-MAG: tipos; características; aplicações; máquinas para soldagem; arames de solda: tipos; aplicações; gases para soldagem: tipos; aplicações; Processo TIG: tipos; características; aplicações; máquinas para soldagem TIG; eletrodos de tungstênio: tipos; aplicações; gases para soldagem: tipos; aplicações. Metalurgia da soldagem. A zona termicamente afetada. Soldagem em ferros fundidos. Técnicas modernas de soldagem.

Bibliografia Básica:

[2] **MARQUES, P. V. MODENESI P. J. BRACARENSE, A. Q. Soldagem:**
Disciplina: GESTÃO E PLANEJAMENTO ESTRATÉGICO
Código: GES02

<table>
<thead>
<tr>
<th>Natureza:</th>
<th>Teórica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga Horária:</td>
<td>30 horas</td>
</tr>
</tbody>
</table>

Objetivos: Transmitir aos alunos os conhecimentos essenciais sobre gestão e planejamento estratégico das organizações, visando fornecer ao profissional com formação técnica os conhecimentos básicos destas áreas, que são atualmente indispensáveis nas organizações empresariais.

Bibliografia Básica:

Bibliografia Complementar:

Disciplina: PROJETO INTEGRADOR I
Código: MET24

Natureza: Teórica

Carga Horária: 60 horas

Objetivos: Permitir ao aluno a possibilidade de aplicar seus conhecimentos em projetos práticos promovendo a integração dos diversos conteúdos abordados no curso. Preparação para o projeto de conclusão de curso.

Ementa: Elaboração e desenvolvimento de um Projeto Integrado junto ao professor orientador.

Bibliografia Básica:

A bibliografia será, eventualmente, indicada pelo professor orientador de Trabalho de Conclusão de Curso, conforme as necessidades específicas do aluno.

8º Semestre

Disciplina: INSTRUMENTAÇÃO E CONTROLE NOS PROCESSOS METALÚRGICOS
Código: MET25
<table>
<thead>
<tr>
<th>Natureza: Teórica e Prática</th>
<th>Código: FIL/SOC01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga Horária: 45 horas</td>
<td></td>
</tr>
<tr>
<td>Objetivos: Apresentar os principais fundamentos e formas de controle associada aos processos metalúrgicos. Introduzir os princípios, técnicas e principais sensores utilizados na instrumentação de processos voltados ao ramo metal-mecânico.</td>
<td></td>
</tr>
<tr>
<td>Bibliografia Básica:</td>
<td></td>
</tr>
<tr>
<td>Bibliografia Complementar:</td>
<td></td>
</tr>
</tbody>
</table>

Disciplina: ÉTICA E RELAÇÕES HUMANAS NO TRABALHO

<table>
<thead>
<tr>
<th>Natureza: Teórica</th>
<th>Código: FIL/SOC01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga Horária: 30 horas</td>
<td></td>
</tr>
<tr>
<td>Objetivos: Incentivar o desenvolvimento de uma cultura ética necessária à vida e à prática profissional. Pensar acerca dos desafios contemporâneos: o lugar do ser humano na sociedade contemporânea. Abordar a ética e cultura; ética nas organizações contemporâneas, ética nas relações sociais, ética e a educação, sobretudo, nas relações étnico-raciais. Oportunizar o estudo das identidades culturais presentes nas populações remanescentes de indígenas e quilombolas, observando a questão da História e cultura</td>
<td></td>
</tr>
</tbody>
</table>
Afro-Brasileira. Discutir sobre, identidade de gênero na sociedade brasileira, povos tradicionais entre outros; Identidade étnica no mundo do trabalho.

Ementa: Estudo dos conceitos fundamentais, das teorias, definições e classificações da Ética e da ação moral. Estudo da cultura e da diversidade cultural presentes nos grupos sociais. Análise e compreensão das principais correntes de pensamento explicativas do agir humano e o devir no campo do Trabalho. Tecnologias do Poder e seus desdobramentos éticos para a constituição da conduta social na coletividade e no mundo profissional. Discutir temas constituintes da cultura das sociedades humanas atreladas a educação étnico-racial.

Bibliografia Básica:

Bibliografia Complementar:

SILVA, Petronilha Beatriz Gonçalves e. Parecer: Diretrizes Curriculares Nacionais para a educação das relações étnico-raciais e para o ensino de história e cultura afro-brasileira e africana. In: SILVÉRIO, Valter Roberto; ABRAMOWICZ, Anete. São

<table>
<thead>
<tr>
<th>Disciplina: Inglês Instrumental II</th>
<th>Código: ING02</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natureza: Teórica</td>
<td></td>
</tr>
<tr>
<td>Carga Horária: 30 horas</td>
<td></td>
</tr>
<tr>
<td>Objetivos: Desenvolver e aprofundar as competências comunicativas do aluno para a compreensão da língua inglesa utilizada em textos técnicos de sua área de formação.</td>
<td></td>
</tr>
<tr>
<td>Ementa: Estudo da língua inglesa em suas estruturas básicas, através de textos científicos. Gramática aplicada, compreensão de textos, conversação, exercícios no laboratório.</td>
<td></td>
</tr>
<tr>
<td>Bibliografia Básica:</td>
<td></td>
</tr>
</tbody>
</table>

| Bibliografia Complementar: | |

<table>
<thead>
<tr>
<th>Disciplina: QUALIDADE E NORMATIZAÇÃO DA SOLDAGEM</th>
<th>Código: MET26</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natureza: Teórica</td>
<td></td>
</tr>
<tr>
<td>Carga Horária: 45 horas</td>
<td></td>
</tr>
<tr>
<td>Objetivos: Processos especiais de soldagem. Soldagem em ferros fundidos. Identificar os principais defeitos que ocorrem na soldagem, avaliar as principais causas desta ocorrência bem como prevenir e corrigir. Selecionar principais técnicas não-destrutivas.</td>
<td></td>
</tr>
</tbody>
</table>
adequadas para identificação desses defeitos.

Bibliografia Básica:

Bibliografia Complementar:

Disciplina: GESTÃO AMBIENTAL
Código: GES03
Natureza: Teórica
Carga Horária: 30 horas

Objetivos: Apresentar aos alunos os conceitos relativos à gestão ambiental, com foco nos sistemas de gestão ambiental e normas de gestão ambiental (série ISO 14000).

Bibliografia Básica:
Disciplina: **GESTÃO DA QUALIDADE**
Código: **GES04**

Natureza: Teórica

Carga Horária: 60 horas

Objetivos: Apresentar os conceitos básicos de qualidade e gestão de qualidade e sua importância no ambiente produtivo e de negócios, fornecendo aos alunos uma visão geral das principais ferramentas da qualidade, suas aplicações e sua integração em processos produtivos.

Ementa: Conceitos básicos de qualidade. Normas de qualidade (ISO 9000 e TS16949). Ciclo PDCA. Método para análise e solução de problemas (MASP). Ferramentas da qualidade. FMEA, 8D, CEP. Introdução à metodologia 6 sigma.

Bibliografia Básica:

Bibliografia Complementar:

Disciplina: **PROJETO INTEGRADOR II** | Código: MET27

Natureza: **Teórica prática**
Carga Horária: **60 horas**

Objetivos: Instrumentalizar o aluno para que este, ao final do semestre, seja capaz de compreender, planejar, executar e sistematizar um trabalho científico.

Ementa: O método científico. O uso das Normas da ANBT para a padronização de: referências, citações, resumos científicos, artigos científicos. Seminários: oralidade e uso de recursos digitais e audiovisuais. Projetos Técnicos e de Pesquisa.

Bibliografia Básica:

1. ABNT. NBR:6023, 6004, 6027, 6028, 10520, 1474.

Bibliografia Complementar:

14. CRITÉRIOS DE APROVEITAMENTO DE ESTUDOS E CERTIFICAÇÃO DE CONHECIMENTOS ANTERIORES

O aproveitamento de estudos é feito através de reconhecimento da identidade e equivalência entre ementas e carga horária entre as disciplinas, totalizando, no mínimo, 75% do conteúdo das ementas e compatibilidade de carga horária.

A Coordenação do Curso, juntamente com o Professor da disciplina é responsável pela análise do currículo com vistas à determinação dos estudos aproveitáveis.

Os alunos poderão também requerer certificação de conhecimentos adquiridos através de experiências previamente vivenciadas, oriundas do mundo do trabalho em diferentes instituições, inclusive fora do ambiente escolar, com o fim de alcançar a dispensa de disciplina(s) integrante(s) da matriz curricular do curso.

O aproveitamento de Estudos bem como a Certificação de Conhecimentos serão regidos e obedecerão as disposições contidas na Resolução nº 83 de 28 de julho de 2010 do Conselho Superior do IFRS – Campus Caxias do Sul.

15. AVALIAÇÃO DA APRENDIZAGEM

A avaliação, compreendida como parte integrante de todo o processo de ensino aprendizagem é emancipatória, gradual e cooperativa, envolvendo todos os sujeitos e processos educativos do Campus Caxias do Sul. A avaliação é considerada uma orientação do processo educativo, pois acompanha e assiste o desempenho dos educandos, contribuindo para sua emancipação, para o exercício de sua cidadania ativa, constituindo parte fundamental do processo e não considerada como momento único, no final da etapa, ou seja, como produto.

Assume de forma integrada as funções diagnóstica, formativa e emancipatória, com preponderância dos aspectos qualitativos sobre os quantitativos.

A avaliação dos aspectos qualitativos compreende, além da produção e construção de conhecimentos, o diagnóstico, a orientação e reorientação do processo de ensino aprendizagem, visando o aprofundamento dos conhecimentos de forma significativa pelos educandos.
A avaliação, enquanto elemento formativo, dará ênfase, ao ser sistematizada, ao conhecimento que os educandos produziram/(re)construíram no decorrer do processo educativo, bem como aos saberes feitos.

A verificação do rendimento escolar é feita de forma diversificada, através de provas escritas e/ou orais, trabalhos de pesquisa, seminários, exercícios, aulas práticas e outros, a fim de atender às peculiaridades dos alunos, realizando uma avaliação emancipatoria que contribua para que o sujeito possa inserir-se e qualificar-se no mundo do trabalho.

Os resultados da avaliação, bem como a frequência dos alunos, são registrados no Diário de Classe e transcritos para a ficha individual do aluno, na Seção de Registros Escolares e registrados no Sistema Acadêmico do IFRS – Campus Caxias do Sul.

16. EXPRESSÃO DOS RESULTADOS

A expressão dos resultados está explicitada e obedece a Norma Operacional nº 001/2010, construída e aprovada pelo IFRS – Campus Caxias do sul.

17. DA JUSTIFICATIVA DE FALTAS

A justificativa de faltas devem seguir conforme a Norma Operacional nº 001/2010 do IFRS - Campus Caxias do Sul.

A justificativa das faltas somente será concedida nos casos previstos em lei, mediante pedido a ser protocolado pelo aluno ou pelo seu representante, com apresentação de documentação original comprobatória.

18. DO EXAME FINAL

O exame final está consoante com as disposições contidas na Norma Operacional nº 001/2010 do IFRS – campus Caxias do Sul.

19. DOS NÍVEIS DE PROMOÇÃO

Os níveis de promoção estão contemplados e regulamentados segundo Norma Operacional nº 001/2010 do IFRS – campus Caxias do Sul.
20. SISTEMA DE AVALIAÇÃO DO PROJETO DO CURSO

O processo de avaliação da qualidade do curso, incluirá a adequação do projeto pedagógico do curso, para atendimento ao disposto no artigo 3º Inciso VIII, da lei nº 10.861, de 14/04/2004, como segue:

Parágrafo único. As competências previstas neste Decreto serão exercidas sem prejuízo daquelas previstas na estrutura regimental do Ministério da Educação e do INEP, bem como nas demais normas aplicáveis.

A avaliação, como processo educacional, permite delinear, obter e fornecer informações úteis para a tomada de decisões com vistas a atingir níveis mais aprimorados de realizações.

A avaliação atinge dois focos distintos, específicos e intimamente relacionados:

• O Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul – Campus Caxias do Sul como um todo;
• O aluno no seu desempenho.

O IFRS – Campus Caxias do Sul procede, periodicamente, a avaliação de todas as suas realizações, face aos objetivos expressos no Plano Político Institucional.

A avaliação prevista no parágrafo anterior faz-se mediante a avaliação de cada um dos órgãos componentes do IFRS – Campus Caxias do Sul submetidos à apreciação do Conselho de Dirigentes cujos resultados servirão de base à elaboração do Plano Político Institucional.

21. TRABALHO DE CONCLUSÃO DO CURSO:

Ao final do curso cada aluno deverá apresentar o Trabalho de Conclusão de Curso (TCC) que é obrigatório e terá suas normas discutidas e elaboradas pelos componentes do Colegiado do respectivo curso, assim como as atribuições dos professores orientadores da elaboração do Projeto e desenvolvimento do TCC, em consonância com as normas do IFRS.
O objetivo desta atividade é proporcionar ao acadêmico uma oportunidade para aprender a preparar um trabalho escrito, além de ampliar os seus conhecimentos sobre tema de seu interesse na área Tecnológica dos Processos Metalúrgicas.

Além da melhor formação acadêmica dos estudantes, o TCC oportuniza a revisão de assuntos já tratados, o exercício do acesso a fontes de informação e concorre para o desenvolvimento de competências e habilidades já previstas neste projeto.

Na estrutura curricular do Curso de Tecnólogo em Processos Metalúrgicos, o TCC será desenvolvido por meio de três disciplinas articuladas e intituladas, Metodologia da Pesquisa, Projeto Integrador I e Projeto Integrador II, desenvolvidas em semestres sucessivos e estruturadas de forma que os discentes, em um primeiro momento, tenham contato direto com os professores orientadores, a fim de que conheçam algumas de suas propostas de projetos a serem desenvolvidos no TCC, bem como suas áreas específicas de interesse e atuação. Desta forma, os discentes poderão optar por uma delas e estruturarem, sob orientação, um projeto de trabalho. Posteriormente, os orientandos terão tempo hábil para realizar leituras e estudos não presenciais e poderão efetivamente executar e concluir o projeto originalmente estruturado nas disciplinas citadas acima.

22. ESTÁGIO SUPERVISIONADO

O Estágio será obrigatório para o Curso Superior de Tecnologia em Processos Metalúrgicos, com carga horária mínima de 400 horas, podendo ser realizado quando o aluno tiver concluído as seguintes disciplinas:

- Tratamentos Têrmicos I;
- Metalografia I;
- Processos de Usinagem I e;
- Fundamentos de Siderurgia

O Estágio Supervisionado deverá ser realizado em locais previamente aprovados pela Coordenação do Curso e/ou Coordenação de Estágio – empresas, instituições que desenvolvam atividades na linha de formação do estudante, cuja atividade principal esteja de acordo com a habilitação técnica pretendida e seja escolhida pelo aluno a fim de consolidar e aplicar os conhecimentos adquiridos.
O estagiário deverá ter um orientador de estágio vinculado ao curso e um responsável pelo acompanhamento das atividades no local de realização do estágio. O aluno deverá desempenhar atividades correlatas a quaisquer assuntos/disciplinas da grade curricular do curso Tecnólogo em Processos Metalúrgicos.

O estágio será precedido da celebração do Termo de Compromisso de Estágio, firmado entre o estudante e a Unidade Concedente de Estágio, com interveniência do IFRS Campus Caxias do Sul, através de setor responsável. O Termo de Compromisso de Estágio assinado por ambas as partes deverá ser entregue, obrigatoriamente, antes do início das atividades do estagiário no local de estágio.

São objetivos do estágio supervisionado: integrar o aluno no mercado de trabalho, permitindo que ele possa ter contato com a realidade industrial e realizar atividades relacionadas aos conteúdos apresentados durante o curso, inserindo-o na prática diária e complementado sua formação. O Estágio proporciona a complementação da aprendizagem em situações reais de vida e trabalho e caracteriza-se como aspecto importante na formação profissional, tendo caráter obrigatório para que o aluno possa obter a Habilitação Profissional de Tecnólogo em Processos Metalúrgicos.

Os estagiários deverão sugerir os nomes de possíveis orientadores, que serão designados pela Coordenação do Curso e/ou Coordenação de Estágio.

Após a definição do orientador, este deverá assinar um documento se comprometendo em orientar o estagiário.

Esta componente curricular obdecerá as disposições aprovadas na Instrução Normativa de Estágio do IFRS – Campus Caxias do Sul.

18. INSTALAÇÕES E EQUIPAMENTOS

As instalações, equipamentos bem como a biblioteca são partes do patrimônio do IFRS campus Caxias do Sul, seguem normativas do IFRS sendo atualizados de acordo com a necessidade do curso em questão.

23. PESSOAL DOCENTE E TÉCNICO ADMINISTRATIVO

Quadro 1: Demonstrativo de recursos humanos para ministrar as diferentes disciplinas para o curso no IFRS - Campus Caxias do Sul a partir de agosto de 2010.

Docentes:
<table>
<thead>
<tr>
<th>Servidor</th>
<th>Graduação</th>
<th>Titulação</th>
</tr>
</thead>
<tbody>
<tr>
<td>André Luiz Portanova Laborde</td>
<td>História</td>
<td>Mestre em Educação Ambientan</td>
</tr>
<tr>
<td>Antônio Fernando Burkert Bueno</td>
<td>Engenharia Mecânica</td>
<td>Mestre em Engenharia – área Ciência dos Materiais</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Doutor em Engenharia – área Ciência e Tecnologia dos Materiais</td>
</tr>
<tr>
<td>Arlan Pacheco Figueiredo</td>
<td>Engenharia Metalúrgica</td>
<td>Mestre em Engenharia de Minas, Metalúrgica e Materiais</td>
</tr>
<tr>
<td>Bernardete Bisi Franklin do Prado</td>
<td>Ciências Biológicas</td>
<td>Especialista em Desenvolvimento Urbano e Gestão Ambiental</td>
</tr>
<tr>
<td>Eduardo de Oliveira da Silva</td>
<td>Química</td>
<td>Mestre em Química</td>
</tr>
<tr>
<td>Erildo Dorico</td>
<td>Física</td>
<td>Mestre em Engenharia de Materiais</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Doutor em Engenharia e Ciência dos Materiais</td>
</tr>
<tr>
<td>Fabiano Dornelles Ramos</td>
<td>Engenharia Metalúrgica</td>
<td>Pós-Doutorado em Engenharia de Materiais e Metalúrgica</td>
</tr>
<tr>
<td>Francisco Leandro Barbosa</td>
<td>Letras</td>
<td>Mestre em Estudos Literários</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Doutor em Estudos Literários</td>
</tr>
<tr>
<td>Giselle Ribeiro de Souza</td>
<td>Engenharia de Alimentos</td>
<td>Especialista em Enologia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mestre em Engenharia de Produção</td>
</tr>
<tr>
<td>João Cândido Moraes Neves</td>
<td>Matemática</td>
<td>Mestre em Modelagem Matemática</td>
</tr>
<tr>
<td>José Cláudio Correa Seferim</td>
<td>Administração</td>
<td>Mestre em Engenharia</td>
</tr>
<tr>
<td>Kelen Berra de Mello</td>
<td>Matemática</td>
<td>Mestre em Matemática Aplicada</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Doutorar em Engenharia Mecânica</td>
</tr>
<tr>
<td>Luis Felipe Rhoden Freitas</td>
<td>Letras - Português e</td>
<td>Especialista em Estudos</td>
</tr>
<tr>
<td>Nome</td>
<td>Curso</td>
<td>Especialização</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td>Marcus Christiano Ramos Bartelli</td>
<td>Geografia</td>
<td>Linguísticos do Texto</td>
</tr>
<tr>
<td>Maria Teresinha Kaefer</td>
<td>Pedagogia</td>
<td>Mestre em Educação</td>
</tr>
<tr>
<td>Marla Regina Vieira</td>
<td>Química</td>
<td>Mestre em Química</td>
</tr>
<tr>
<td>Mauro Maisonave de Melo</td>
<td>Educação Física</td>
<td>Especialista em Projetos Sociais e Culturais</td>
</tr>
<tr>
<td>Olavo Ramalho Marques</td>
<td>Ciências Sociais</td>
<td>Mestre em Antropologia Social</td>
</tr>
<tr>
<td>Rodrigo Ernesto Schröer</td>
<td>Matemática</td>
<td>Especialista em Ensino de Matemática</td>
</tr>
<tr>
<td>Rodrigo Lupinacci Villanova</td>
<td>Engenharia</td>
<td>Doutor em Engenharia de Minas, Metalúrgica e Materiais</td>
</tr>
<tr>
<td>Rudinei Fiorio</td>
<td>Tecnologia em Polímeros</td>
<td>Mestre em Engenharia de Minas, Metalúrgica e Materiais</td>
</tr>
<tr>
<td>Tatiana Weber</td>
<td>Tecnologia em Polímeros</td>
<td>Mestre em Engenharia e Ciência dos Materiais</td>
</tr>
<tr>
<td>Tissiane Schmidt Dolci</td>
<td>Hotelaria</td>
<td>Mestre em Turismo</td>
</tr>
<tr>
<td>Vicente Zatti</td>
<td>Filosofia</td>
<td>Mestre em Educação</td>
</tr>
</tbody>
</table>

Fonte: Departamento de Recursos Humanos do IFRS - Campus Caxias do Sul.

Apoio pedagógico:

<table>
<thead>
<tr>
<th>Servidor</th>
<th>Graduação</th>
<th>Titulação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magali Inês Pessini</td>
<td>Licenciatura em Física</td>
<td>Mestre em Educação</td>
</tr>
<tr>
<td>Rose Elaine Barcellos Duarte Arrieta</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valdinei Marcolla</td>
<td>Licenciatura Plena em Pedagogia</td>
<td>Mestre em Educação</td>
</tr>
</tbody>
</table>

Fonte: Departamento de Recursos Humanos do IFRS - Campus Caxias do Sul.
24. CERTIFICADOS E DIPLOMAS

Ao completar todos os componentes curriculares o aluno será graduado como Tecnólogo em Processos Metalúrgicos.

25. DA COLAÇÃO DE GRAU

Cumpridas todas as exigências previstas, ao final do Curso, os alunos poderão participar da cerimônia oficial de colação de grau, ou optar pela formatura em gabinete, que são atos jurídicos de concessão do título profissional.

A formatura, presidida pelo Reitor (a), Direção Geral do Campus, Coordenação do Curso ou seu(s) representante(s), consta da assinatura da Ata oficial pelo(s) formando(s), após o juramento público. Acontece em data e local pré-estabelecido pela instituição, obedecido ao regulamento oficial da quanto à colação de grau, aprovado pelos órgãos superiores da instituição.

26. CASOS OMISSOS

Os casos omissos serão resolvidos pela direção, coordenação pedagógica e coordenação do curso ou colegiado.

Este Projeto Pedagógico de Tecnologia em Processos Metalúrgicos entrará em vigor a partir de sua aprovação pelo Conselho de Dirigentes do Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul – Campus Caxias do Sul.

Caxias do Sul, junho de 2010.

GISELLE RIBEIRO DE SOUZA,
Diretora Geral “Pró-Tempore” do IFRS- Campus Caxias do Sul.